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Abstract  

The paper presents the results of developing an algorithm for automatic target recognition in 
broadband (0.110) terahertz images. Due to the physical properties of terahertz radiation and as-
sociated hardware, such images have low contrast, low signaltonoise ratio and low resolution – 
i.e. all the characteristics of a lowcount images. Therefore, standard recognition algorithms de-
signed for conventional images work poorly or are not suitable at all for the problem considered. 
We have developed a fundamentally different approach based on clustering 2D point clouds in ac-
cordance with a set of predefined patterns. As a result, we reduce the problem of target recognition 
to the problem of maximizing the image data likelihood with respect to the classes of model ob-
jects up to the size and position. The resulting recognition algorithm has a structure close to that of 
the well-known EM algorithm; its formal scheme is at the end of the paper. 
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Introduction 

Terahertz (THz) radiation consists of electromagnetic 
waves with frequencies in the range between infrared and 
microwave radiation – from 0.1 to 10 THz [1]. Since this 
frequency range comprises wavelengths from 3 mm to 30 
μm (see Fig. 1), the terahertz range is often referred to as 
a submillimetre range.  

 
Fig. 1. The terahertz (THz) spectral range 

A number of useful properties of THz radiation are the 
same as properties of neighboring ranges on the spectrum. 
As well as infrared and microwave radiation, THz radiation 
is propagated in the line of sight (LOS) and is nonionizing 
(as opposed to X rays). Like microwave radiation, THz radi-
ation can penetrate through nonconductive material: clothes, 
paper, wood, plastic, etc. (however, it should be borne in 
mind that, as a rule, THz penetration depth is slightly small-
er, and, moreover, it cannot penetrate through liquids [2]). 
Since THz radiation exhibit good penetrating power, it can 
be used to obtain images of hidden objects. For this reason it 
is a good basis for automatic target recognition (ATR) sys-
tems [3] developed for early detection and warning of 
threats. Because detection of such threats is one of key is-
sues of public places security, it is obvious the great interest 
in such systems. A lot of them either have been developed or 
are at the evaluation stage. Accordingly, in recent years there 
is an extraordinary growth of publications on this subject, 
and we observe it both as in foreign editions [1, 4 – 7] as in 
Russian ones [8 – 10]. 

However, a number of existing problems partially di-
minish the initial optimism about the THzbased ATR. 
First of all, THz radiation is usually weak (including the 

case of active illumination). Therefore, THz images are 
characterized by low signaltonoise ratio. This leads to 
a low contrast, fuzzy shapes of the objects on the back-
ground scene. Secondly, because of limited sensitivity of 
THz detectors, the THz image should be formed by 
timeconsuming scan procedures (sometimes forming in-
dividual pixels). As a result, the obtained images contain 
a small number of resolution elements – they belong to 
the class of low–count images. Therefore, in contrast to 
the images in the visible range, which can be approximat-
ed with good accuracy by a continuous distribution of in-
tensity within the image plane, THz images are rather 2D 
clouds of discrete points with a small number of grada-
tions of intensity, often binary (0/1) images, see Fig. 2 
(A – visible image, B – THz image, C – infrared image).  

   
Fig. 2. Image quality for different spectral ranges:  

visible, THz and infrared images [3] 

From the above arguments it follows that the standard 
recognition algorithms designed for conventional images 
suitable for ATR will work poorly in the THz range. 
Therefore, the task of developing new THz image pro-
cessing algorithms and techniques in the context of ATR 
is crucial today. 

1. Automatic target recognition for lowcount images 

Automatic target recognition (ATR) technologies [11], 
as a rule, comprise the use of computer hardware for sys-
tems of detection and recognition of controlled, hidden ob-
jects of interest by processing data images from cameras, an-
tennas, radars and other sensors, for example THz sensors.   
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The fundamental problem of ATR is detection and 
identification of objects (targets) of interest in the context 
of complex scenes with other objects registered, often in 
very noisy environment. The precise definition of the 
concepts of a target, scene and noise depends on a partic-
ular application. In case of ATR the term classification is 
often used instead of the term identification, and although 
there are subtle differences (identification is a more pre-
cise category), when solving practical problems, these 
differences are usually ignored, and the term recognition 
is used instead of above two terms. 

Practical ATR systems, as a rule, include a pipeline of 
operations as shown in Fig. 3 [11]. Ideally, the targets of 
the original image are subsequently detected, recognized 
by pipeline operations and included in the output list of 
targets. While original data are moving through the pipe-
line, data processing procedures become more specific 
and focused on certain target attributes. As a result, the 
amount of data associated with nontarget objects must 
gradually decrease. Since there is usually a lot of 
nonrelevant objects in the scene and very few target ob-
jects (sometimes none), very sophisticated, nontrivial 
algorithms for original data processing, image segmenta-
tion and object recognition are required.  

 

Fig. 3. Conceptual diagram of data processing pipeline  
in ATR systems 

This paper presents the results of developing an algo-
rithm for one of the procedures executed in the pipeline – the 
algorithm of automatic target objects (briefly targets) recog-
nition. A special feature of the algorithm is that it is initially 
focused on the specifics of terahertz images containing low 
contrast, lowcount objects with a low signaltonoise ratio 
[12], such as presented in Fig. 4 (A – a ceramic knife and a 
handgun hidden under the clothes; B – a handgun and a rec-
tangular piece of radio anechoic material under the clothes; 
C – a ceramic knife also hidden under the clothes). It is as-
sumed that the algorithm receives at its input a fragment of 
the scene already containing an object detected at the pre-
ceding steps of the processing pipeline. The purpose of the 
algorithm is to recognize the object according to the speci-
fied classification database (DB), including as a rule the 
classes of target objects. 

   

 
Fig. 4. THz images, the radiometric temperature is shown 

on the right in grayscale [12] 

2. Classification DB 

Classes of objects in Classification DB are families of 
lowcontrast, lowcount images of similar subjects, 
which can be arbitrarily positioned or scaled. 

Representatives of such classes (a, b, c), for example, 
for the ATR system that recognizes the images in Fig. 4, 
are shown in Fig. 5 (a – ‘knife’, b – ‘rectangular’, c –
‘handgun’, respectively). Let us first specify what is 
meant by similarity of subjects and leave the questions of 
their permissible locations and sizes for the next section.  

   
Fig. 5. Formalized description of three classes of objects in the 

form of Gaussian mixture parameters (centers and elliptical 
contours of four Gaussian components are shown over images) 

A main recognition problem is the fact that original 
data are usually presented in a form that is hardly suitable 
for their immediate recognition (in our case in a form of 
binary lowcount images). Recognition algorithms usual-
ly require a highlevel representation of objects. Such 
representation is carried out by some formalized descrip-
tion. Note that, depending on the degree of generality of 
descriptions, one (formalized) description can correspond 
to the whole family of (similar) subjects.   

In our previous works [13] related to the processing of 
discrete spacedistributed data that can be represented as 
a point cloud, we developed a new method of their eco-
nomic description in a convenient for computations form 
using a Gaussian mixtures [14]. The basic idea of the 
method is that a set of cloud points is considered as a set 
of independently sampled, random coordinate vectors 

}{ ix


. These vectors are considered as identically distrib-
uted according to the weighted sum (mixture) of Gaussi-
an densities: 
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where N is the number of mixture components,  is a set of 
parameters },,{ jjj B


 of all N components, P is the di-

mension of coordinate space (in [13] P was 3). As a result, 
it is possible to use ~ NP2 parameters for the relatively 
rough description of the cloud instead of a list of coordi-
nates }{ ix


 of all its points. In case of small N it is more 

practical. If the same idea is applied to the binary 
lowcount images (P = 2), then each object will be associ-
ated with some Gaussian mixture whose parameters can be 
considered as a formalized object description (see Fig. 5).  

Besides the fact that this description will be much 
more practical and convenient in terms of computation, it 
provides an opportunity to introduce a quantitative crite-
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rion of similarity. That is, two objects are considered sim-
ilar if Gaussian mixture (1) corresponding to image of 
one of them, describe well the image of other and vice 
versa. As a numerical parameter of the description quali-
ty, it is possible to take, for example, the value of likeli-
hood ratio of both images (better its logarithm) with giv-
en Gaussian mixture of one of them. The level of this 
value can be compared to the likelihood ratio of that ob-
ject image and, for example, an empty image of the same 
size – an image with a uniform probability distribution – 
considered as natural point of reference.  

However, the most important argument in favor of the 
Gaussian mixture is a remarkable fact that there are effec-
tive algorithms to determine Gaussian mixtures that de-
scribe given randomly sampled data in the best way. 
These algorithms are known as the family of EM (Expec-
tation–Maximization) algorithms [15]. A common feature 
of this family of algorithms is iterative (recurrent) nature 
of computations. At consequent iterations, the EM algo-
rithm improves the estimation of parameters  for distri-
bution describing the selected data in the best way. The 
value of the likelihood function is chosen as a criterion of 
quality in EM (EM implements maximum likelihood 
method). Mixtures schematically shown in Fig. 5 and de-
scribing the consequent fragments in Fig. 4 were obtained 
exactly using the classical EM algorithm with N = 4. 

3. Recognition algorithm 

Successfully solving the problem of describing clas-
ses of a certain domain DB (solving the problem of sys-
tem learning), the proposed method, in the foregoing 
form, is unfortunately not very suitable for recognition. It 
would seem that if we find an appropriate mixture (1) for 
the subject of recognition and test it using the above 
method for similarities with the available classes in a da-
tabase generated in the course of learning, the class that is 
the most similar to the object will solve the problem.  
However, such "rough" recognition falls down even in 
case of small displacements of the object on the image 
plane or changes in size. It turns out that similarity by 
size and location (on the image) are a much more im-
portant factor than the similarity of shape and other more 
subtle details. 

For this reason, we expanded the concept of object 
classes by adding the ability of scaling the size and ran-
dom displacement in a plane to each object. Convention-
ally speaking, if an object of a certain class is represented 
by a cloud of points with coordinates }{ ix


, the object 

with the coordinates }{ iy


, mxky ii


 , obtained from 
the initial object after extension of the image plane with 
coefficient k and subsequent shift by vector m


 is also 

considered belonging to this class.  
It is easy to deduce that if the mixture with the param-

eters },,{ jjj B


 corresponds to the initial object, then 

after described mk


  conversion mixture will have pa-

rameters },,{ 2kBmk jjj
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 . Accordingly, the test for 

the class formally described by a set },,{ jjj B


 will in-

clude predetermination of k and m


 maximizing the like-
lihood function (better logarithm) of the mixture: 
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and subsequent analysis of the obtained values of the 
likelihood function with a purpose to determine the class 
of the tested object (maximum likelihood class). Compu-
tation scheme of this recognition algorithm is very similar 
to the structure of the EM algorithm and it is shortly de-
scribed in the next section. The results of applying the al-
gorithm to recognition of independent handgun in THz 
image using the database shown in Fig. 5 are presented in 
Fig. 6.  

 
Fig. 6. The results of the recognition of a new object of a 

'handgun' type using the database shown in Fig. 5 

3.1. Algorithm scheme 

As mentioned above, our algorithm extends EM algo-
rithm [15], so it has analogous scheme. It is also an itera-
tive method for finding maximum likelihood (ML) esti-
mates of parameters in a set of statistical models (from 
classification DB) like (2). For each model our algorithm 
iteration alternates between performing an expectation 
(E) step, which creates (implicitly) a function for the ex-
pectation of the log-likelihood evaluated using the current 
estimate for the weights }{ j and k, m


 parameters and 

maximization (M) step, which computes parameters max-
imizing the expected log-likelihood found on the E step. 
These parameter-estimates are used to determine the dis-
tribution of the latent variables in the next E step. 

More specifically, if the object given by a set of coor-
dinate vectors }{ ix


 is tested with respect to the definite 

class having formalized (model) description },,{ jjj B


, 

then the successive steps of the algorithm are as follows: 
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Initialization: set }{ j , k, m


 to some initial esti-

mates, for example exactly equal to class parameters: 

(0) (0) (0),   0,   1,   1 .j j jm k j ,...,N    


 (3) 

Further calculations proceed iteratively with the itera-
tions counter n. 

Step E: with the values of parameters have been 
found at the previous iteration n, calculate discreet condi-
tional distribution of the latent variables (component in-
dicators) for each ix


: 
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Step M: based on found distribution {ij} (4) recalcu-
late weights {j} and find },{ jj Am


– analogues of EM 
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were M denotes a number of coordinate vectors }{ ix


. Us-

ing (5) calculate auxiliary vectors v


 and w

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using these vectors v


 and w


 and estimates (5) find coef-
ficients α and β of the quadratic equation for k: 
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that finally allows us to find all the values of key parame-
ters and k, m


: 
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After (8) n incremented, next iteration begins. 

3.2. Computational experiments 

To estimate characteristics of proposed algorithm a 
number of computational experiments was performed. 
Simulation of THz low–count images in accordance with 
their described in the introduction properties was carried 
out in two stages (see Fig. 7). At first, to reduce the con-
trast of the image and to perform its fuzzyfication (blur-
ring), the Gaussian smoothing was performed. After that, 
a random sample of counts for a given sample size M was 
generated according to the intensity of smoothed image. 
Two stages a – b and b – c of this simulation procedure 
are shown in Fig. 7 (a – a visible source image of 'hand-
gun'; b – low contrast, fuzzy shaped image – Gaussian 
smoothing of source image a; c –300 count size Poisson 
sample of smoothing image b). 

 
Fig. 7. Modeling low–count images such as THz scans  

To generate a random sample of counts in stage b – c, 
Poisson sampler was used. The main reason for this is the 
simplicity of Poisson sampler implementation: all counts 
are generated independently and each count is formed in 
accordance with the probability distribution equal to the 
normalized intensity over the image. Tree typical results 
generated for different values of the sample size M are 
shown in Fig. 8 (a – 300 counts; b – 1000 counts; c –
 3000 counts). 

 
Fig. 8. Different sample size low–count images of 'handgun' 

from Fig. 7  

Algorithm under discussion was tested on image 
models like presented in Fig. 8. Preformed classification 
DB contained four–component Gaussian mixture parame-
ters },,{ jjj B


 (j = 1,…,4) for three classes оf objects 

(images ~ 1000 counts) represented in Fig. 5: a –‘knife’, 
b –‘rectangular’, c –‘handgun’. These parameter sets were 
found as a classical EM algorithm (100 iterations) output.  

In these computational experiments for each of three 
different sample size low – count image of 'handgun' 
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(300, 1000, 3000 samples) besides resulting graphical 
representations like in Fig. 6 the numerical characteristic 
named ‘similarity’ and ‘likelihood’ were calculated. The 
results of these computational experiments (500 itera-
tions) are shown in Table 1: 

Table 1. Recognition characteristics of algorithm  

Image sample size M = 300 
DB class similarity likelihood 

a (‘knife’) 10.88 28 
b (‘rect’) 6.18 141 
c (‘gun’) 4.26 324 

Image sample size M = 1000 
DB class similarity likelihood 

a (‘knife’) 10.70 340 
b (‘rect’) 5.62 575 
c (‘gun’) 3.82 1239 

Image sample size M = 3000 
DB class similarity likelihood 

a (‘knife’) 10.44 901 
b (‘rect’) 5.74 1357 
c (‘gun’) 3.94 3265 

 In Table 1 the characteristic named ‘similarity’ is the 
value of coefficient k(500) (8). The characteristic ‘likeli-
hood’ actually means the logarithm of likelihood func-
tions ratio where nominator is probability of recognized 
object given the Gaussian mixture density ),,|( mkxi


  

(2) and denominator is a uniform probability distribution 
constxi  )(0


 (empty image class).  

Table 1 shows that for each of three different sample 
size low–count images the likelihood for class c (‘gun’) is 
maximal. It is more than twice more than likelihood of 
class b (‘rect’), and about four times bigger the likelihood 
of class a (‘knife’). This means that the algorithm is quite 
reliably detects the presented object like a gun. Note that 
with increasing sample size, the likelihood grows almost 
proportionally. This allows formulating the almost obvious 
conclusion: to improve the quality of algorithm in the 
noisy environment necessary to increase the number of im-
age counts. In this regard, it is worth to note that the simi-
larity parameter – estimation of the coefficient k with a 
change in the number of counts varies relatively slightly. 

For a deeper understanding of the algorithm proposed 
it was compared with alternative algorithm which use the 
image counts clustering based on Mahalanobis metric, 
similar to k-means method. As it is well known, and it is 
evident from the Algorithm scheme above, the conditional 
distribution πij calculated on step E assumes some ran-
domized procedure for image counts distributing across a 
Gaussian components and evaluation on this base of de-
sired parameters on step M. If instead of the randomized 
procedure for the distribution of counts would be used a 
deterministic one, for example based on the criterion of 
minimum Mahalanobis distance of counts from the center 
of component, the alternative algorithm would be de-
signed. Because of the evidence of this idea, such algo-
rithm, except may be some no principal details, seems 
certainly was somewhere designed and investigated. 
Nevertheless, we have implemented this algorithm in 

software and a series of numerical experiments similar to 
that described above was carried out for it also. The re-
sults of computational experiments (500 iterations) are 
shown in Table 2: 

Table 2. Recognition  characteristics of alternative  

Image sample size M = 300 
DB class similarity likelihood 

a (‘knife’) 10.88 28 
b (‘rect’) 6.20 142 
c (‘gun’) 6.82 268 

Image sample size M = 1000 
DB class similarity likelihood 

a (‘knife’) 10.70 340 
b (‘rect’) 5.61 574 
c (‘gun’) 6.29 962 

Image sample size M = 3000 
DB class similarity likelihood 

a (‘knife’) 10.44 901 
b (‘rect’) 5.74 1357 
c (‘gun’) 6.37 2504 

Comparing Tables 1 and 2 it is interesting to note that 
in both series of numerical experiments the results of test-
ing object ‘handgun’ by wrong classes ‘knife’ and ‘rec-
tangle’ are almost the same. On the contrary, the pro-
posed algorithm for the correct class ‘gun’ gives much 
bigger likelihood values and its similarity coefficients are 
closer to reality than for the alternative algorithm.  

A careful analysis of these facts shows that in the case 
of wrong classes both algorithms behave equally badly - 
trying to distribute all the image counts in the only com-
ponent (cluster) assigning zero weights to other compo-
nents. Therefore, in both wrong cases, both algorithms 
give the same results. In the case of a class corresponding 
to the object tested, the algorithm based on Mahalanobis 
metric clustering, is still trying to assign all the counts to 
one cluster, while the proposed algorithm intelligently 
distributes them over suitable components as shown in 
Fig. 9 (a – algorithm based on Mahalanobis metric clus-
tering (‘hard’ clustering) and b – proposed algorithm 
(‘soft’ clustering)). So our algorithm gives the best per-
formance. The above discussion is a particular manifesta-
tion for a particular problem of a deeper general ideas 
[16] concerning the advantages of the ‘soft’ clustering 
methods over the ‘hard’ ones (randomized clustering pro-
cedures over deterministic clustering).  

  
Fig. 9. The difference in correct recognition  

of the object ‘handgun’  
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Conclusions 

The computational results obtained by algorithm 
proposed demonstrate that our approach is a good basis 
for the ATR system development, including the systems 
for security screening to detect the presence of a variety 
of threats, such as weapons or explosives, or illicit 
items, ranging from drugs to illegal immigrants [17]. 
The proposed approach for algorithm synthesis is clear 
in theoretical concepts and computationally efficient. 
For this reasons, we hope that the proposed methodolo-
gy will be further developed and will be used for the 
relevant applications. 
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